Multilevel Modeling of Categorical Response Variables
نویسندگان
چکیده
Data ......................................................................................................................483 Response and Explanatory Variables ..........................................................483 Weights ............................................................................................................484 Missing Data ................................................................................................... 487 Dichotomous Response Variables ..................................................................... 490 Multilevel Binary Logistic Regression ........................................................ 490 A Latent Variable Approach ......................................................................... 493 Estimation ........................................................................................................ 495 Example for Binary Response Variable ....................................................... 496 Nominal Response Variables ............................................................................. 501 Baseline Multinomial Model ........................................................................ 501 Estimation ........................................................................................................502 Multinomial Example ....................................................................................503 Ordinal Response Variables ...............................................................................508 Continuation Ratios .......................................................................................508 Adjacent Categories .......................................................................................509 Cumulative Probabilities ............................................................................... 512 Example ........................................................................................................... 514 Software ................................................................................................................ 516 Discussion ............................................................................................................ 517 Acknowledgment ................................................................................................ 518 References ............................................................................................................. 518
منابع مشابه
The Analysis of Ordered Categorical Data: An Overview and a Survey of Recent Developments
This article reviews methodologies used for analyzing ordered categorical (ordinal) response variables. We begin by surveying models for data with a single ordinal response variable. We also survey recently proposed strategies for modeling ordinal response variables when the data have some type of clustering or when repeated measurement occurs at various occasions for each subject, such as in l...
متن کاملComputationally Efficient Estimation of Multilevel High-Dimensional Latent Variable Models
Multilevel analysis often leads to modeling with multiple latent variables on several levels. While this is less of a problem with Gaussian observed variables, maximum-likelihood (ML) estimation with categorical outcomes presents computational problems due to multidimensional numerical integration. We describe a new method that compared to ML is both computationally efficient and has similar MS...
متن کاملGeneralized Multilevel Structural Equation Modeling
A unifying framework for generalized multilevel structural equation modeling is introduced. The models in the framework, called generalized linear latent and mixed models (GLLAMM), combine features of generalized linear mixed models (GLMM) and structural equation models (SEM) and consist of a response model and a structural model for the latent variables. The response model generalizes GLMMs to...
متن کاملContinuous Time Survival in Latent Variable Models
We describe a general multivariate, multilevel framework for continuous time survival analysis that includes joint modeling of survival time variables and continuous and categorical observed and latent variables. The proposed framework is implemented in the Mplus software package. The survival time variables are modeled with nonparametric or parametric proportional hazard distributions and incl...
متن کاملAnalyzing ‘visual world’ eyetracking data using multilevel logistic regression
A new framework is offered that uses multilevel logistic regression (MLR) to analyze data from ‘visual world’ eyetracking experiments used in psycholinguistic research. The MLR framework overcomes some of the problems using conventional analyses, making it possible to incorporate time as a continuous variable and gaze location as a categorical dependent variable. The multilevel approach minimiz...
متن کامل